) M.N.O. Sadiku, CRC Press 1992.
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¢ EM pulse (EMP) problems [33],
o EM exploration of minerals [34], and
o EM energy deposition in human bodies [35,36].

It is practically impossible to cover all those applications within the limited
scope of this text. In this section, we consider the relatively easier problems
of transmission lines and waveguides while the problems of penetration
and scattering of EM waves will be treated in the next section. Other
applications utilize basically similar techniques.

3.7.1 Transmission Lines

The finite difference techniques are suited for computing the characteristic
impedance, phase velocity, and attenuation of several transmission lines—
polygonal lines, shielded strip lines, coupled strip lines, microstrip lines,
coaxial lines, and rectangular lines [12~-19]. The knowledge of the basic
parameters of these lines is of paramount importance in the design of mi-
crowave circuits.

For concreteness, consider the microstrip line shown in Fig. 3.14(a). The
geometry in Fig. 3.14(a) is deliberately selected to be able to illustrate how
one accounts for discrete inhomogeneities (i.e., homogeneous media sepa-
rated by interfaces) and lines of symmetry using finite difference technique.
The techniques presented are equally applicable to other lines. Due to the
fact that the mode is TEM, having components of neither E nor H fields
in the direction of propagation, the fields obey Laplace’s equation over the
line cross section. The TEM mode assumption provides good approxima-
tions if the line dimensions are much smaller than half a wavelength, which
means that the operating frequency is far below cutoff frequency for all
higher order modes [16]. Also owing to biaxial symmetry about the two
axes only one quarter of the cross section need be considered as shown in
Fig. 3.14(b).

The finite difference approximation of Laplace’s equation, V2V = 0, has
been derived in Eq. (3.26), namely,

V(i) =3 [VG+10)+ V(-1 + Vi +)+VGi-1)].  (3.40)

For the sake of conciseness, let us denote

Vo= V(i,j)

Vi=V(@,j+1)

Voa=V(i-1,5) (3.41)
Va=V(i,j-1)

Va=V(i+1,5)
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Figure 3.14 (a) Shielded double strip line with partial dielectric support;
(b) problem in (a) simplified by making full use of symmetry.
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Figure 3.15 Computation molecule for Laplace’s equation.
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Figure 3.16 Interface between media of dielectric permittivities ¢; and
€2.

so that Eq. (3.40) becomes

V, = % [v1 + Vot Vot u,] (3.42)

with the computation molecule shown in Fig. 3.15. Equation (3.42) is
the general formula to be applied to all free nodes in the free space and
dielectric region of Fig. 3.14(b).

On the dielectric boundary, the boundary condition,

Dln = DZn, (343)

must be imposed. We recall that this condition is based on Gauss’s law for
the electric field, i.e.,

D.dl= $¢E.dl= Qenc =0 (3.44)
fo-a=4,

since no free charge is deliberately placed on the dielectric boundary. Sub-
stituting E = -vV in Eq. (3.44) gives

_ _ [ oV
0= f;cvv-dl = j{e%dl (3.45)
where 3V/dn denotes the derivative of ¥ normal to tlie contour £. Applying
Eq. (3.45) to the interface in Fig. 3.16 yields

Vi -V Vo-Wo)h Vo-Vo)h
0=€1( lh °)h+cl( 2h o)_2_+€2( 2h o)7

(Va-Vo) (Va-Vo) b (Va-VYo) h
to = —hta—g—"gta—p—g.
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V1
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A Vi
.
x Vv, V, V, >
(a) (b)

Figure 3.17 Com_pgta.tion molecule used for sa;tisfying symmetry
conditions: (a) 8V /dz =0, (b) 8V /8y = 0.

Rearranging the terms,

2(61 + 62)V0 =€ V1 + €2V3 + M(Vl + V4) |
or

Vo = 1 V, €2 l l
T ate) ! + 2(e1 + €3) Vot riChy rad (3.46)

This is the fmite difference equivalent of the boundary condition in Eq.
(3.43). Notice that the discrete inhomogeneity does not affect points 2
and 4 on the boundary but affects points 1 and 3 in proportion to their

corresponding permittivities. Also note that when €¢; — e, E
reduces to Eq. (3.42). 1 2, Eq. (3.46)

On the line of symmetry, we impose the condition

o _,
on — (3.47)

Tl‘llis implies that on the line of symmetry along the y-axis, (z =0 or i = 0)
v (V- V2)/h =0 or V3 =V, so that Eq. (3.42) becomes

Vo = [V1 +Vat 2V4] (3.48a)

] =
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or

V(0,5)= % [V(O,j +1)+V(0,j-1)+ 2V(1,j)] . (3.48b)

On the line of symmetry along the z-axis (y=0or j = 0), aa—‘; = (W, -
Va)/h=0or V3=V so that

Vo= [2vi+vat vi) (3.49a)

V(i,0) = % [2V(i, D+ V(@E-1,00+V(i+ 1,0)]. (3.49b)

The computation molecules for Eqgs. (3.48) and (3.49) are displayed in Fig.
3.17.

By setting the potential at the fixed nodes equal to their prescribed val-
ues and applying Eqs. (3.42), (3.46), (3-48), and (3.49) to the free nodes
according to the band matrix or iterative methods discussed in Section 3.5,
the potential at the free nodes can be determined. Once this is accom-
plished, the quantities of interest can be calculated.

The characteristic impedance Z, and phase velocity u of the line are

defined as
Zo=y| L (3.50a)
C

1
U= T (3.50b)
where L and C are the inductance and capacitance per unit length, respec-
tively. If the dielectric medium is nonmagnetic (4 = Ho), the characteristic
impedance Zo, and phase velocity u, with the dielectric removed (i.e., the

line is air-filled) are given by

00 = \| = (3.51a)

(3.51b)

where C, is the capacitance per unit length without the dielectric. Com-
bining Egs. (3.50) and (3.51) yields

1 1
Zo=———=—F 3.52a
4\/CCo  ¥C (3:522)

— ’Ca _ Yo
U®U = Uo ? = \/Zﬁ (352b)
€off = Cga (352C)
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Figure 3.18 The rectangular path £ used in calculating charge enclosed.

where 4, = ¢ = 3 x 108 m/s, the speed of light in free space, and €4 is
the effective dielectric constant. Thus to find Z, and u for an inhomeoge—
neous medium requires calculating the capacitance per unit length of the
structure, with and without the dielectric substrate.

If V, is the potential difference between the inner and the outer conduc-

tors,
= 4Q
C= V! (3.53)
so that the problem is reduced to finding the charge per unit length Q.
(The fa»ct.or 4 is needed since we are working on only one quarter of the
cross section.) To find @, we apply Gauss’s law to a closed path £ enclosing

thg inner conductor. We may select £ as the rectangular path between two
adjacent rectangles as shown in Fig. 3.18.

Q=]€D.d1=}€e%%de

- (Lo (S oV

+f(%)m+ (3.54)
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Since Az = Ay = A,

Q= (cvp+cvM+cv,, +cVG+---) - (ch +26VL + Vi +)

or

Q=¢co [E ¢.;V; for nodes i on external rectangle GHIMP
with corners (such as J) not count.ed]
—€o [Z ¢,;V; for nodes  on inner rectangle KLN

with corners (such as L) counted t.wice] ,

(3.55)

where V; and ¢,; are the potential and dielectric constant at the ith node.
If i is on the dielectric interface, €,; = (€1 + €,2)/2. Also if i is on the
line of symmetry, we use V;/2 instead of V; to avoid including V; twice in
Eq. (3.53), where factor 4 is applied. We also find

Co = 4Q9/Vd (356)

where Q, is obtained by removing the dielectric, finding V; at the free nodes
and then using Eq. (3.55) with ¢,; = 1 at all nodes. Once @ and Qo are
calculated, we obtain C and C, from Eqgs. (3.53) and (3.56) and Z, and u
from Eq. (3.52).

An outline of the procedure is given below:

(1) Calculate V (with the dielectric space replaced by free space) using
Egs. (3.42), (3.46), (3.48), and (3.49).

(2) Determine Q using Eq. (3.55).

(3) Find C, = i‘VQ .

d

(4) Repeat steps (1) and (2) (with the dielectric space) and find C =
4Q
Vi .

5) Finally, calculate Z, = ————, c¢=3x10® m/s.

(5) Inally. ° C\/—o

The attenuation of the line can be calculated by following similar pro-
cedure outlined in [14,20,21]. The procedure for handling boundaries at
infinity and that for boundary singularities in finite difference analysis are
discussed in [37,38].

Finite Difference Methods 173

3.7.2 Waveguides

The solution of waveguide problems is well suited for finite difference
schemes because the solution region is closed. This amounts to solving
the Helmholtz or wave equation

V2P + k26 =0 (3.57)

where ® = E, for TM modes or & = H, for TE modes, while k is the wave
number given by

k2 =wlpe - 2. (3.58)

The permittivity € of the dielectric medium can be real for a lossless medium
or complex for a lossy medium. We consider all fields to vary with time and
axial distance as expj(wt - Bz). In the eigenvalue problem of Eq. (3.57),
both k and & are to be determined. The cutofl wavelength is A = 27 /k..
For each value of the cutoff wave number k., there is a solution for the
eigenfunction &;, which represents the field configuration of a propagating
mode.

To apply the finite difference method, we discretize the cross section of
the waveguide by a suitable square mesh. Applying Eq. (3.24) to Eq. (3.57)
gives

| O(i+1,7)+ (G - 1,5) + B, + 1) + B3, - 1) - (4 - h2k2)®(i,5) =0 |
(3.59)
where Az = Ay = h is the mesh size. Equation (3.59) applies to all the free
or interior nodes. At the boundary points, we apply Dirichlet condition
(® = 0) for the TM modes and Neumann condition (6®/dn = 0) for the
TE modes. This implies that at point A in Fig. 3.19, for example,

&,=0 (3.60)

for TM modes. At point A, 8®/9n = 0 implies that &, = & so that Eq.
(3.57) becomes

®p+Bc+20p - (4-h2%k2)D, =0 (3.61)

for TE modes. By applying Eq. (3.59) and either Eq. (3.60) or (3.61) to
all mesh points in the waveguide cross section, we obtain m simultaneous

equations involving the m unknowns (®;,®,,..- ,®m). These simultaneous
equations may be conveniently cast into the matrix equation
(A-AD®=0 (3.62a)





